Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1577575

ABSTRACT

Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.


Subject(s)
Aerosols , COVID-19 , Drug Delivery Systems , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nebulizers and Vaporizers , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design , Humans , Infection Control/methods , Models, Biological , Particle Size , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , SARS-CoV-2
2.
Pharmaceutics ; 13(10)2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1444294

ABSTRACT

Drug delivery devices used for aerosol therapy during mechanical ventilation to ease the symptoms of respiratory diseases provide beneficial treatment but can also pose challenges. Reflecting the significant changes in global guidance around aerosol usage and lung-protective ventilation strategies, seen in response to the COVID-19 pandemic, for the first time, we describe the drug delivery performance of commonly used devices under these conditions. Here, vibrating mesh nebuliser (VMN), jet nebuliser (JN) and pressurised metered-dose inhaler (pMDI) performance was assessed during simulated adult mechanical ventilation. Both standard test breathing patterns and those representatives of low tidal volume (LTV) ventilation with concurrent active and passive humidification were investigated. Drug delivery using a VMN was significantly greater than that with a JN and pMDI for both standard and LTV ventilation. Humidification type did not affect the delivered dose across all device types for standard ventilation. Significant variability in the pMDI dosing was evident, depending on the timing of actuation and the adapter type used. pMDI actuation synchronised with inspiration resulted in a higher delivered drug dose. The type of adapter used for pMDI actuation influenced drug delivery, with the highest dose observed using the CombiHaler.

3.
Drug Deliv ; 28(1): 1496-1500, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1309552

ABSTRACT

COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.


Subject(s)
Aerosols , COVID-19 , Disease Transmission, Infectious/prevention & control , Metered Dose Inhalers , Nebulizers and Vaporizers , Respiration, Artificial/methods , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/physiopathology , COVID-19/therapy , COVID-19/transmission , Combined Modality Therapy , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Occupational Exposure/prevention & control , Research Design , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , Risk Management , SARS-CoV-2
4.
BMJ Open Respir Res ; 8(1)2021 Mar.
Article in English | MEDLINE | ID: covidwho-1153685

ABSTRACT

BACKGROUND: The COVID-19 pandemic has highlighted the need for alternative short-term, reliable means to aid in the treatment of patients requiring ventilatory support. Concurrent aerosol drug delivery is often prescribed to such patients. As such, this study examines one such short-term option, the disposable gas-powered transport ventilator to effectively deliver aerosol therapy. Factors such as aerosol generator type, patient breathing pattern, humidification and nebuliser position within the respiratory circuit were also examined. METHODS: Aerosol drug delivery characterisation was undertaken using two different disposable transport ventilators (DTVs). Two different nebuliser types, a closed circuit vibrating mesh nebuliser (VMN) and an open circuit jet nebuliser (JN), at different locations in a respiratory circuit, proximal and distal to an endotracheal tube (ETT), with and without passive humidification, were evaluated in simulated adult and paediatric patients. RESULTS: Placement of a nebuliser proximal to the ETT (VMN: 25.19%-34.15% and JN: 3.14%-8.92%), and the addition of a heat and moisture exchange filter (VMN: 32.37%-40.43% and JN: 5.60%-9.91%) resulted in the largest potential lung dose in the adult patient model. Irrespective of nebuliser position and humidification in the respiratory circuit, use of the VMN resulted in the largest potential lung dose (%). A similar trend was recorded in the paediatric model data, where the largest potential lung dose was recorded with both nebuliser types placed proximal to the ETT (VMN: 8.12%-10.89% and JN: 2.15%-3.82%). However, the addition of a heat and moisture exchange filter had no statistically significant effect on the potential lung dose (%) a paediatric patient would receive (p>>0.05). CONCLUSIONS: This study demonstrates that transport ventilators, such as DTVs, can be used concurrently with aerosol generators to effectively deliver aerosolised medication in both adult and paediatric patients.


Subject(s)
COVID-19/therapy , Disposable Equipment , Nebulizers and Vaporizers , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Administration, Inhalation , Aerosols , Albuterol/therapeutic use , Drug Delivery Systems , Equipment Design , Humans , In Vitro Techniques , SARS-CoV-2
5.
Pharmaceutics ; 13(2)2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1067768

ABSTRACT

COVID-19 may lead to serious respiratory complications which may necessitate ventilatory support. There is concern surrounding potential release of patient-derived bioaerosol during nebuliser drug refill, which could impact the health of caregivers. Consequently, mesh nebulisers have been recommended by various clinical practice guidelines. Currently, there is a lack of empirical data describing the potential for release of patient-derived bioaerosol during drug refill. This study examined the release of simulated patient-derived bioaerosol, and the effect on positive end expiratory pressure during nebuliser refill during mechanical ventilation of a simulated patient. During jet nebuliser refill, the positive end expiratory pressure decreased from 4.5 to 0 cm H2O. No loss in pressure was noted during vibrating mesh nebuliser refill. A median particle number concentration of 710 particles cm-3 above ambient was detected when refilling the jet nebuliser in comparison to no increase above ambient detected when using the vibrating mesh nebuliser. The jet nebuliser with the endotracheal tube clamped resulted in 60 particles cm-3 above ambient levels. This study confirms that choice of nebuliser impacts both the potential for patient-derived bioaerosol release and the ability to maintain ventilator circuit pressures and validates the recommended use of mesh nebulisers during mechanical ventilation.

SELECTION OF CITATIONS
SEARCH DETAIL